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Shifting Paradigm of Association Studies:
Value of Rare Single-Nucleotide Polymorphisms

Ivan P. Gorlov,1 Olga Y. Gorlova,1 Shamil R. Sunyaev,2 Margaret R. Spitz,1

and Christopher I. Amos1,*

Currently, single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) of >5% are preferentially used in case-control

association studies of common human diseases. Recent technological developments enable inexpensive and accurate genotyping of

a large number of SNPs in thousands of cases and controls, which can provide adequate statistical power to analyze SNPs with MAF

<5%. Our purpose was to determine whether evaluating rare SNPs in case-control association studies could help identify causal SNPs

for common diseases. We suggest that slightly deleterious SNPs (sdSNPs) subjected to weak purifying selection are major players in

genetic control of susceptibility to common diseases. We compared the distribution of MAFs of synonymous SNPs with that of non-

synonymous SNPs (1) predicted to be benign, (2) predicted to be possibly damaging, and (3) predicted to be probably damaging by Poly-

Phen. Our sources of data were the International HapMap Project, ENCODE, and the SeattleSNPs project. We found that the MAF

distribution of possibly and probably damaging SNPs was shifted toward rare SNPs compared with the MAF distribution of benign

and synonymous SNPs that are not likely to be functional. We also found an inverse relationship between MAF and the proportion

of nsSNPs predicted to be protein disturbing. On the basis of this relationship, we estimated the joint probability that a SNP is functional

and would be detected as significant in a case-control study. Our analysis suggests that including rare SNPs in genotyping platforms will

advance identification of causal SNPs in case-control association studies, particularly as sample sizes increase.
Introduction

The common-disease common-variant (CDCV) hypothe-

sis1–4 has been the prevailing paradigm for case-control

association studies for the past decade. Although the

CDCV hypothesis1 originally defined common polymor-

phisms as those with a population frequency of R1%, in

practice researchers often exclude single-nucleotide poly-

morphisms (SNPs) that have frequencies <5% from case-

control association studies. The International HapMap

Project was designed to improve the efficiency of case-

control association studies and intentionally targeted

SNPs with minor allele frequencies (MAFs) of R5%.5,6

Common SNPs (SNPs with MAF R5%) are preferentially

queried in most case-control association studies for two

major reasons: (1) the statistical power is not sufficient

for rare SNPs when sample sizes are limited, and (2) com-

mon SNPs can significantly contribute to disease preva-

lence even if their effect on disease risk is modest.

Case-control association studies have led to the identifi-

cation of several polymorphisms that affect a person’s risk

for common diseases, including Alzheimer’s disease

(APOE),7 type 2 diabetes (PPARG and KCNJ11),8–10 and

several others.11–14 Furthermore, several common SNPs

affecting cancer susceptibility have been identified.15–18

However, many of these currently identified SNPs have

modest effects on cancer risk and have low reproduci-

bility.19–23

It is also noteworthy that most of the cited studies were

conducted with relatively small study samples (400–1000
100 The American Journal of Human Genetics 82, 100–112, Januar
study subjects). Recent technological advances enable

genotyping of hundreds of thousands of SNPs in thou-

sands of cases and controls (e.g., 24 and 25). A large sample

size allows SNPs with MAF <5% to be analyzed. The dom-

inance of the CDCV hypothesis has dissuaded genotyping

companies from including rare SNPs in coding and pro-

moter regions in their SNP genotyping panels. In this anal-

ysis, we evaluated the hypothesis that in large case-control

association studies, targeting SNPs with MAF <5% is likely

to be more effective than targeting common SNPs in de-

tecting genetic susceptibility to common diseases, includ-

ing cancer.

Material and Methods

Data Retrieval
We used the International HapMap database (rel22_Build36)26 to

retrieve data on the distribution of MAFs for SNPs annotated as

intronic, synonymous, or nonsynonymous by the dbSNP data-

base.27,28 The HapMap data are subdivided into three groups or

samples by race: whites of North European origin, Asians (Chinese

and Japanese), and Yoruba in Ibadan, Nigeria. In this study, we sep-

arately analyzed CEPH and Yoruba samples because there is con-

siderable variation in allele frequencies between them.29–31 We

did not include Chinese and Japanese samples because different

sample sizes were queried: If analyzed separately, the sample size

is lower than those for CEPH and Yoruba; if combined, the sample

size is bigger. A separate analysis was run with SNPs data from the

ENCODE project.32 We obtained the ENCODE data by sequencing

ten 500 kb regions in 48 individuals (16 from each group). The
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novel SNPs detected by sequencing were then genotyped in all 269

HapMap DNA samples.32

Data from the dbSNP database were used for the analysis of the

relationship between MAF and the proportions of nsSNPs pre-

dicted to be protein disturbing. Not all SNPs reported in the dbSNP

are true polymorphisms; according to some studies, the false-dis-

covery rate might be as high as 10%.33,34 To decrease the propor-

tion of false discoveries in our sample, we used only frequency-val-

idated SNPs. Thus, 6158 frequency-validated nsSNPs from 3912

genes were used in the analysis.

SeattleSNPs Database
The SeattleSNPs project generated SNP data for samples from

both European and African populations. At the time of our access

(August 2007), the database contained sequencing data from 307

genes ranging in length from 3 Kb (ICAM4 gene) to 653 Kb

(SEC15L2 gene). The SNP data were available for 24 African

descent (AD) and 23 European descent (ED) subjects. The total

number of SNPs detected in the analysis included 31505 in-

tronic, 764 synonymous, and 720 nonsynonymous SNPs. We

did not include deletions, insertions, and sites with more than

two alleles in the analysis. The SNPs were identified by sequenc-

ing of genomic DNA and, therefore, provide unbiased representa-

tion of different types of SNPs in gene regions. Because the

number of nonsynonymous SNPs was low in this sample, we

subdivided SNPs in ten MAF categories with increments of 5%.

Nonsynonymous SNPs were subdivided into two groups: (1)

benign (B) and (2) possibly or probably damaging SNPs

(Pos.D./Prob.D.). We combined the possibly and probably dam-

aging SNPs together because overall there were only 214 damag-

ing SNPs.

Intronic Ratio
We used the ratio of absolute numbers of nsSNPs to the absolute

number of intronic SNPs in a given MAF bin (intronic ratio) to vi-

sualize the effect of purifying selection.35 A constant intronic ratio

suggests that there are no differences in the intensity of purifying

selection among MAF bins. Counts of the SNPs of different MAF

categories for HapMap and SeattleSNPs samples are shown in

Tables 1 and 2.

Prediction of Functional SNPs
NsSNPs that are likely to disturb protein structure or function can

be predicted with bioinformatics approaches. Several bioinfor-

matics tools for predicting the functionality of nsSNPs have

been developed.36–38 In this study, we used SIFT and PolyPhen

to evaluate the functional significance of SNPs because those

methods are the most frequently used.36 SNPs predicted to be in-

tolerant by SIFT were considered functional, and SNPs predicted to

be tolerant were considered nonfunctional. For the PolyPhen-

based prediction, possibly or probably protein-damaging SNPs

were considered functional, and SNPs predicted to be benign

were considered nonfunctional.

For estimating the relationship between MAF and the propor-

tion of predicted protein-disturbing SNPs among nsSNPs, the

nsSNPs were binned into 20 categories defined by MAF increments

of 2.5%. For each MAF category, we computed the proportion of

SNPs predicted to be protein disturbing. To compare MAF distribu-

tions for different types of SNPs, these were also were binned into

20 groups defined by MAF increments of 2.5%.
The A
Radical and Conservative Missense Mutations
To stratify amino acid substitutions into radical and conservative,

we adopted the classification system used by Dagan et al.39 In

brief, all amino acids were subdivided into three groups according

to their charge: positive (R, H, and K), negative (D and E), and un-

charged (A, N, C, Q, G, I, L, M, F, P, S, T, W, Y, and V). The amino

acids were further subdivided by volume and polarity: special (C),

neutral and small (A, G, P, S, and T), polar and relatively small (N,

Table 1. Counts of SNPs in Different MAF Categories in the
HapMap Data Set

Population MAFa

Type of SNP

Intronic S B Pos.D. Prob.D.

CEPH 0–0.025 38755 5626 4675 1584 987

CEPH 0.025–0.05 5778 571 370 109 51

CEPH 0.05–0.075 5580 462 403 82 40

CEPH 0.075–0.1 5262 458 317 74 38

CEPH 0.1–0.125 5402 414 300 52 34

CEPH 0.125–1.15 5217 355 280 57 27

CEPH 0.15–0.175 5182 332 272 48 32

CEPH 0.175–0.2 5320 341 214 43 33

CEPH 0.2–0.225 5293 286 235 55 34

CEPH 0.225–0.25 5082 296 206 37 26

CEPH 0.25–0.275 5181 297 225 54 22

CEPH 0.275–0.3 5097 268 237 45 24

CEPH 0.3–0.325 5213 299 210 35 16

CEPH 0.325–0.35 4981 304 236 36 19

CEPH 0.35–0.375 5124 243 197 34 20

CEPH 0.375–0.4 5054 277 199 36 19

CEPH 0.4–0.425 5038 251 164 38 25

CEPH 0.425–0.45 5181 240 171 46 26

CEPH 0.45–0.475 5190 271 200 26 26

CEPH 0.475–0.5 5155 223 212 31 13

Total 138085 11814 9323 2522 1512

Type of SNP

Population MAFa Intronic S B Pos.D. Prob.D.

Yoruba 0–0.025 33463 4650 4230 1475 930

Yoruba 0.025–0.05 7351 745 512 135 72

Yoruba 0.05–0.075 6903 618 447 92 57

Yoruba 0.075–0.1 6521 542 369 84 54

Yoruba 0.1–0.125 6404 554 309 67 31

Yoruba 0.125–1.15 5950 498 368 70 34

Yoruba 0.15–0.175 5952 400 312 74 44

Yoruba 0.175–0.2 5804 417 263 42 20

Yoruba 0.2–0.225 5397 356 212 42 26

Yoruba 0.225–0.25 5311 389 232 35 28

Yoruba 0.25–0.275 5174 338 221 55 20

Yoruba 0.275–0.3 4996 317 211 33 30

Yoruba 0.3–0.325 4928 282 218 32 21

Yoruba 0.325–0.35 4757 247 196 28 13

Yoruba 0.35–0.375 4527 244 178 33 24

Yoruba 0.375–0.4 4614 236 187 36 22

Yoruba 0.4–0.425 4560 266 175 29 19

Yoruba 0.425–0.45 4532 262 177 36 23

Yoruba 0.45–0.475 4352 263 166 40 16

Yoruba 0.475–0.5 4548 226 169 27 15

Total 136044 11850 9152 2465 1499

S, synonymous; B, benign; Pos.D., possibly damaging; and Prob.D., proba-

bly damaging SNPs.
a In each MAF category, the upper limit was included and the lower limit

was excluded, e.g., 0.45–0.475 includes all SNPs with 0.45< MAF % 0.475.
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D, Q, and E), polar and relatively large (R, H, and K), nonpolar and

relatively small (I, L, M, and V), and nonpolar and relatively large

(F, W, and Y). Any substitutions that moved an amino acid from

one category to another were considered radical, whereas substitu-

tions that did not change amino acid category were classified as

conservative. We performed separate analyses for radical (totaling

3695) and conservative (totaling 2463) substitutions.

Statistical Analysis
Spearman’s nonparametric correlation was used for estimation of

the association between MAF and the proportion of nsSNPs

predicted to be protein disturbing, P(F). We used logarithmic

regression, PðFÞ ¼ a,lnðMAFÞ þ b, and linear regression, PðFÞ ¼
a,MAF þ b, to fit the binned data by the least-squares method.

Statistical power was computed by assuming a case-control

design with independent cases and controls, and the data were

analyzed by an uncorrected chi-square test.40 The sample size

was varied from 100 to 10,000 in increments of 100. The MAF

was assumed to vary from 0 to 0.5 in increments of 0.025. Domi-

nant and recessive models with genotypic risk ratios of 1.3 and 1.5

were considered. Critical p values of 0.05 were used.

Adjusting the Proportion of Functional nsSNPs

by Sensitivity and Specificity of PolyPhen
The observed proportion of functional nsSNPs depends on the

true proportion and on the sensitivity and specificity of the

Table 2. Counts of SNPs of Different MAF Categories
in the SeattleSNPs Data Set

Population MAFa

Type of SNP

Intronic S B Pos.D. Prob.D.

ED 0–0.05 20239 513 346 95 73

ED 0.05–0.1 2126 53 32 9 4

ED 0.1–0.15 1664 44 25 5 5

ED 0.15–0.2 1277 18 17 4 1

ED 0.2–0.25 1236 31 18 1 6

ED 0.25–0.3 1275 32 17 5 0

ED 0.3–0.35 952 17 19 0 0

ED 0.35–0.4 818 18 17 0 2

ED 0.4–0.45 981 22 9 1 0

ED 0.45–0.5 937 16 6 1 2

Total 31505 764 506 121 93

Type of SNP

Population MAFa Intronic S B Pos.D. Prob.D.

AD 0–0.05 15722 370 292 81 59

AD 0.05–0.1 4732 122 56 16 13

AD 0.1–0.15 2488 68 35 6 5

AD 0.15–0.2 1747 40 33 7 3

AD 0.2–0.25 1717 49 17 2 5

AD 0.25–0.3 1243 24 20 3 2

AD 0.3–0.35 1106 26 16 3 1

AD 0.35–0.4 812 13 9 0 3

AD 0.4–0.45 943 28 13 1 1

AD 0.45–0.5 995 24 15 2 1

Total 31505 764 506 121 93

ED, European descent; AD, African descent; S, synonymous; B, benign;

Pos.D., possibly damaging; and Prob.D., probably damaging SNPs.
a In each MAF category the upper limit was included and the lower limit was

excluded, e.g., 0.45–0.5 includes all SNPs with 0.45 < MAF % 0.5.
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predicting method. Let Ptf be the true proportion of functional

nsSNPs in a given MAF category (bin) and Pobs be the observed

proportion of functional SNPs. For PolyPhen, the probability of

identifying a SNP as functional when it is functional (sensitivity)

is ~0.82, and the probability of identifying a SNP as functional

when it is nonfunctional (1 specificity) is ~0.08.38 The observed

proportion of functional SNPs, given that the true proportion is

Ptf, can be computed as follows: Pobs ¼ Ptf$0.82 þ (1 � Ptf) 0.08;

therefore, Ptf ¼ (Pobs � 0.08)/0.74. We used the latter equation to

adjust the estimated proportion of protein-disturbing nsSNPs for

the sensitivity and specificity of PolyPhen. We were not able to

find estimates of specificity and sensitivity for SIFT and, therefore,

were not able to provide a similar correction for the proportion of

SNPs predicted to be functional by SIFT.

Results

Distribution of SNPs by MAF

The International HapMap Project26 and the dbSNP data-

base27,28 were used as sources of data. We retrieved data

from the International HapMap Project on the distribution

of MAFs in coding regions (rel22_Build36). A separate

analysis was run with SNPs data from the Encyclopedia

of DNA Elements (ENCODE) project.32 The ENCODE

data were obtained by sequencing ten 500 kb regions in

48 individuals (16 from each group). The novel SNPs de-

tected by sequencing were then genotyped in all HapMap

DNA samples.32

We compared the proportion of SNPs in different MAF

categories by using the ENCODE SNPs and all the HapMap

SNPs (Figure 1). The total number of SNPs in the ENCODE

data set was 93,149, and the total number of SNPs in

the phase II HapMap database (rel22_NCBI_Build36) was

3,839,363 for the Centre d’Etude du Polymorphisme

Humain (CEPH) population and 3,782,818 for the Yoruba

population. Only parents were included in the analysis.

Figure 1. Distribution of SNPs from the Encyclopedia of DNA
Elements and of All SNPs Reported in the International HapMap
Database by Minor Allele Frequency
The distribution of encyclopedia of DNA elements (orange) and all
single-nucleotide polymorphisms (SNPs) reported in the Interna-
tional HapMap database (blue) by minor allele frequency (MAF)
are shown. All SNPs regardless of their functional category were
included in the analysis.
2008



SNPs were included in the analysis regardless of their

MAF and binned into 20 MAF groups. We found that the

proportion of SNPs with MAF <5% in the ENCODE data

set (0.50 5 0.01) was significantly greater than the pro-

portion of rare SNPs in the entire HAPMAP data set

(0.38 5 0.01). Because ENCODE SNPs were identified by

direct sequencing of a constant sample size, they are

expected to be less biased than phase II HapMap SNPs for

which the initial SNP discovery phase reflects a combi-

nation of pooled sequencing and direct sequencing

conducted on varying number of subjects; this result

strongly suggests that the majority of SNPs in the human

genome have MAF <5%. The limited number of 45

individuals sequenced by ENCODE further suggests that

the actual proportion of rare SNPs could be greater

than 50%.

Figure 2. Distribution of Intronic
Ratios and MAFs for Various Types of
the HapMap SNPs in Coding Regions of
the Human Genome: S, B, Pos.D., and
Prob.D. SNPs
(A)–(C) show the CEPH (Europeans) sample;
(D)–(F) show the YRI (Africans) sample. (A)
and (D) show intronic ratios for synony-
mous SNPs (S), nonsynonymous SNPs pre-
dicted to be benign (B), nsSNPs predicted
to be possibly damaging (Pos.D.), and
nsSNPs predicted to be probably damaging
(Prob.D.). Absolute numbers of S, B,
Pos.D., and Prob.D. SNPs varied drastically,
thereby making direct comparisons of
intronic ratios difficult. For visual clarity,
we scaled the average ratios to 1 by anchor-
ing the distributions by their rightmost
parts (i.e., 0.4–0.5). Standard errors (SEs)
are shown for S and Prob.D. SNPs. (B) and
(E) show the distribution of SNPs with
0–0.025 MAFs. The proportion of SNPs in
the 0–0.025 MAF category is shown sepa-
rately because it was much greater than
proportions in the other categories. MAF
was portioned into 20 bins by a 2.5%
step. (C) and (F) show the proportion of
SNPs in MAF >0.025 categories.

MAF and the Intronic Ratio Based

on HapMap Data

The ratio of absolute numbers of SNPs

of specific categories reported in the

database (e.g., nsSNPs) to the absolute

number of intronic SNPs (here re-

ferred to as the intronic ratio) can be

used as a relative measure of selec-

tion.35 A constant intronic ratio across

different MAF categories suggests that

there are no differences in intensity of

selection among MAF categories. An

increased intronic ratio at low MAFs suggests purifying se-

lection against nsSNPs. We computed intronic ratios for

20 MAF categories from the HapMap data for (1) nonsynon-

ymous SNPs predicted to be probably damaging protein

structure and function damaging (Prob.D.), (2) nonsynon-

ymous SNPs predicted to be possibly damaging protein

structure and function damaging (Pos.D.), (3) nonsynony-

mous SNPs predicted to be benign (B), and (4) synonymous

SNPs (S). We used PolyPhen for prediction of functional-

ity.38 The list of nsSNPs with prediction of functionality

can be found in Table S1 available online.

Figures 2A and 2D show the intronic ratios for nsSNPs

for CEPH (Europeans) and YRI (Africans) samples corre-

spondingly. We found that the intronic ratio was nearly

constant for nsSNPs with MAF>20%. However, for nsSNPs

with MAF <10%, and especially for SNPs with MAF <5%,
The American Journal of Human Genetics 82, 100–112, January 2008 103



the intronic ratio increased sharply, suggesting a strong

effect of purifying selection. We further found that the

relationship between MAF and intronic ratio for benign

SNPs was similar to that for synonymous SNPs. We also

found an increased intronic ratio at lower MAFs for Prob.D.

and Pos.D. SNPs, suggesting stronger purifying selection

against these categories. The intronic ratio was increased

for rare synonymous and benign SNPs for HapMap data

set, but this effect could reflect a bias against genotyping

of rare intronic SNPs.

Comparison of MAF Distributions of SNPs of Different

Functional Types in the Coding Region Based

on HapMap Data

Not all SNPs reported in the database are true polymor-

phisms; according to some studies, the false-discovery

rate might be as high as 10%.33,34 To decrease the propor-

tion of false discoveries in our sample, we used only fre-

Figure 3. Distribution of Intronic
Ratios and SNPs by MAF Categories,
SeattleSNPs Database
(A)–(C) show European descent; (D)–(F)
show African descent. (A) and (D) show
intronic ratios for synonymous SNPs (S),
nonsynonymous SNPs predicted to be be-
nign (B), nsSNPs predicted to be possibly
or probably damaging (Pos.D./Prob.D.).
The distributions were anchored by their
rightmost parts similarly as in Figure 2.
SEs are shown for S and Pos.D./Prob.D.
SNPs. (B) and (E) show the distribution
of SNPs with 0–0.05 MAFs. Proportions of
SNPs in 0–0.05 MAF category are shown
separately because they were much greater
than proportions in the other categories.
(C) and (F) show proportions of SNPs in
MAF >0.05 categories.

quency-validated SNPs. Thus, 6158

frequency-validated nsSNPs from

3912 genes were used in the analysis.

We found that the MAF distribu-

tion of the probably damaging SNPs

(SNPs that are most likely to disturb

protein structure and function) was

left-shifted in CEPH and YRI samples

(Figures 2B, 2C, 2E, and 2F). There

was also a trend for SNPs that were

likely to be functional to have lower

MAF. The difference between SNP cat-

egories suggests that purifying selec-

tion shapes MAF distributions of SNPs

in the coding region. We excluded

intronic SNPs from this analysis of

MAF distributions because of a bias

against genotyping intronic SNPs; in-

tronic SNPs are less likely to be chosen

for genotyping by HapMap compared with the SNPs in the

coding regions.

Intronic Ratios and MAF Distributions

Based on SeattleSNPs Data

Figures 3A and 3D show the intronic ratios for SNPs identi-

fied by sequencing of genomic DNA (SeattleSNPs database)

for thesubjectsof European and Africandescent correspond-

ingly. We found that in European subjects in the group of

rare SNPs (MAF %0.05) the intronic ratio for Pos.D./Prob.D.

SNPs was 3.74 5 0.18, which was significantly higher com-

pared to the intronic ratio for both synonymous (1.23 5

0.14) and benign (1.41 5 0.17) SNPs (t test for S versus

Pos.D./Prob.D. SNPs was 9.6, N ¼ 32,269, p << 0.001). No

significant differences were detected between benign and

synonymous SNPs. Intronic ratios for these two types of

SNPs were constant across MAF categories. Similar results

were obtained for the subjects of African descent (Figure 3D).
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Figure 4. Proportion of Nonsynony-
mous Single-Nucleotide Polymorphisms
Predicted to be Protein Damaging Plot-
ted against Minor Allele Frequency
Each point represents the proportion of
functional nsSNPs in a given MAF category.
(A) shows the proportion predicted by the
PolyPhen method. Dark solid lines are the
logarithmic-regression curves. The orange
line is the regression curve adjusted for
PolyPhen’s sensitivity and specificity (see
Material and Methods for details). Vertical
bars represent SEs computed on the basis
of the multinomial distribution. (B) shows
the proportion predicted by the sorting
intolerant from tolerant (SIFT) method.
Figures 3B, 3C, 3E, and 3F show the distribution of MAF

for intronic, synonymous, benign, and damaging SNPs

among Europeans and Africans correspondingly. For Euro-

peans, we found that the proportion of Pos.D./Prob.D.

SNPs was highest in MAF 0–0.05 (0.78 5 0.02); the propor-

tion of benign SNPs was not significantly different from

the proportion of synonymous SNPs, with 0.68 5 0.02

and 0.67 5 0.02, correspondingly. The proportion of in-

tronic SNPs in the MAF category 0–0.05 (0.64 5 0.01)

tended to be lower compared to that of benign and synon-

ymous SNPs. Similar results were obtained for the subjects

of African descent (Figures 3E and 3F).

Relationship between MAF and the Proportion

of Protein-Damaging SNPs

We analyzed the relationship between the MAF and the

proportion of nsSNPs predicted to be protein damaging

by PolyPhen (Figure 4A) (Spearman’s correlation coeffi-

cient was �0.75, n ¼ 25, and p < 0.001). The logarithmic

regression of the observed proportion of functional nsSNPs

on the MAF was
_
PðFÞ ¼ �0:04,lnðMAFÞ þ 0:17. In this

case, logarithmic regression explained 79% of the variation

and also fitted the data better than did linear regression,

which explained 56% of the observed variation. For the

PolyPhen method, we also adjusted the prediction curve

by PolyPhen sensitivity and specificity as described in the

Material and Methods.

A similar result was obtained for the proportion of the

nsSNPs predicted to be protein damaging by sorting intol-

erant from tolerant (SIFT).41 MAF was negatively correlated

with the proportion of SIFT-predicted protein-damaging

nsSNPs (Spearman’s nonparametric correlation coefficient

was�0.73, n¼ 25, and p< 0.001) (Figure 4B). Logarithmic

regression explained 74% of the observed variation and

fitted the data better than did linear regression, which

explained only 54% of the variation.

Obviously MAF is not the only indicator of the probabil-

ity that a SNP is functional. The category of SNP is also as-

sociated with its functionality. For example, synonymous

SNPs are less likely to be functional compared with nsSNPs.

If we consider SNPs from a specific functional category
The Am
(e.g., synonymous SNPs), the overall probability for SNPs

from that category to be functional will vary from that

for SNPs in other categories. Within a category, however,

one can expect to see the same inverse relationship be-

tween MAF and the proportion of functional SNPs because

purifying selection will drive down MAFs of functional

SNPs. We compared the proportion of SNPs predicted to

be functional separately for nsSNPs producing radical

mutations and for nsSNPs producing conservative mis-

sense mutations (Figure 5). A radical missense mutation

replaces wild-type amino acid with an amino acid that is

chemically different, whereas conservative mutations re-

place wild-type amino acids with chemically similar ones.

Therefore, the overall proportion of functional substitu-

tions is expected to be greater among radical missense

mutations than among conservative ones. We found that

the overall probability that a SNP is functional is almost

two times greater for nsSNPs producing radical missense

mutations than for nsSNPs producing conservative mis-

sense mutations. We also found that the logarithmic-

regression curves of the proportion of functional SNPs on

MAF were very similar for these two types of SNPs, suggest-

ing that the same factors influence MAF-functionality rela-

tionships for SNPs having different prior probabilities to

be functional.

Statistical Power to Detect Effects of Rare SNPs

Statistical power depends on many factors including effect

size (usually expressed as the odds ratio [OR]), sample size,

mode of inheritance (e.g., dominant or recessive), and

MAF. The statistical power is generally lower for rare SNPs

than for common SNPs of a similar effect size. Figure 6

illustrates the relationship between statistical power and

the needed sample size for a series of SNPs with MAF

%5%, assuming a dominant model. For a SNP with OR ¼
1.5 and MAF ¼ 5%, a sample size of 1862 (931 cases and

931 controls) would be needed to achieve 80% statistical

power to detect the effect at a p level of 0.05. For a SNP

with OR ¼ 1.5 and MAF ¼ 2.5%, the required sample size

would be 3420, and for MAF ¼ 1%, the required sample

size would exceed 8120. The power is very sensitive to
erican Journal of Human Genetics 82, 100–112, January 2008 105



the OR. With OR ¼ 2 and MAF ¼ 5%, the required sample

size is 580 (290 cases and 290 controls). For the same OR

and MAF ¼ 2.5%, the required sample size is 1050, and

for MAF¼ 1%, the required sample size is 2450. This shows

that when the effect of rare SNPs is relatively high

(OR R2), there is sufficient power to detect the effect of

a rare SNP, even for a modest sample size of 1000.

Power to Detect a True Association

Not all nsSNPs are functional and impart a potential to be

disease associated. Statistical power predicts the probabil-

ity that a SNP will be detected as significant conditional

on its being functional, which we denote as P(S,F). Thus

the joint probability that a SNP is significant and func-

tional is expressed as P(S,F) ¼ P(SjF)P(F), for which P(S,F)

Figure 5. Conservative versus Radical Amino Acid Substitu-
tions
Proportions of functional SNPs among radical (blue line) and con-
servative (green line) amino acid substitutions are shown. Vertical
bars represent SEs. Predictive curves (gray) and equations are
shown separately for radical and conservative substitutions.
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is the joint probability that a SNP is significant and func-

tional, P(SjF) is the power, and P(F) is the probability that

a SNP is functional. If we assume P(F) ¼ 1, we will obtain

the statistical power that is usually used to design case-con-

trol association studies. Our analysis demonstrated, how-

ever, that the probability that a SNP was functional was

negatively correlated with MAF, whereas the probability

that a SNP will be detected as significant was positively cor-

related with MAF. In other words, there is a trade-off

between gain in probability of detection and loss in the

proportion of functional SNPs when MAF increases. To

account for this inverse relationship, we used the P(S,F)

¼ P(SjF)P(F) formula to compute the joint probability

that a SNP is functional and will be detected as significant.

We defined this joint probability as the power to detect

a true association (PDTA), which predicts statistical power

when P(F) s 1 but depends on MAF.

Figure 7 gives a quantitative example of computing

PDTA and shows that PDTA first increases, reaches a maxi-

mum, and subsequently decreases. The MAF at which

PDTA is maximal is an important parameter for the design

of a case-control study because it maximizes the chance

that a functional SNP will be detected as significant. The

MAF at which PDTA is maximal was denoted as the most

powerful MAF (mpMAF).

For this and other computations of PDTA, we used a con-

servative assumption that the OR did not depend on MAF

and that only the proportion of functional SNPs did. How-

ever, rare SNPs might disturb gene function to a greater

extent than common SNPs and therefore have higher

ORs. If this is true, statistical power should increase with

the increasing rarity of SNPs compared with a model

with a constant OR.

Like statistical power, PDTA depends on sample size, ef-

fect size, inheritance model, and MAF. PDTA’s dependence

on the sample size is important because sample size is one

of the key parameters in case-control-study design. We

computed PDTAs for a set of sample sizes and MAFs. Reces-

sive and dominant models were analyzed (Figure 8). Ridges

on the PDTA surfaces mark MAFs at the mpMAF, where the

PDTA is maximal. The mpMAF ridge was much sharper for

the dominant model than the recessive model, suggesting

that a given deviation in MAF from the mpMAF leads to

a much stronger decrease in the PDTA in the dominant

model than in the recessive model.
Figure 6. Relationship between Statis-
tical Power and Needed Sample Size
The model shows a dominant causal single-
nucleotide polymorphism with a minor
allele frequency (MAF) %5%. (A) shows
OR ¼ 1.5, and (B) shows OR ¼ 2.0. We
used a 5% significance level. The power
calculations were performed on the basis
of the assumption that only one SNP is
being typed (no corrections for multiple
testing).
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Figure 7. Example of Computing Proba-
bility to Detect True Association and
Most Powerful Minor Allele Frequency
Study of single-nucleotide polymorphisms
in a dominant model of inheritance with
300 cases and 300 controls. An OR ¼ 1.5
was assumed. In (A), the red line shows
the dependence of the statistical power
on minor allele frequency (MAF), and the
blue line shows the predicted proportion
of functional SNPs P(F), predicted by for-
mula 1. (B) shows the dependence of
PDTA on MAF. The mpMAF is marked by
the vertical line, which indicates ~0.22 in
this case.
The results presented in Figure 8 suggest an inverse

relationship between mpMAF and sample size. We further

investigated the relationship between mpMAF and sample

size by computing PDTAs and mpMAFs for dominant and

recessive models with ORs of 1.3 and 1.5. We found that

for all scenarios, mpMAF decreased as the sample size in-

creased (Figure 9). For the dominant model, with a modest

OR of 1.5, mpMAF was <5% when the sample size was

R1500. For the recessive model, with an OR of 1.5,

mpMAF was <5% when the sample size was R6000. We

also found that, given the same sample size, mpMAF was

higher for lower ORs (for a given sample size, mpMAF

increased as OR decreased). mpMAFs were higher for the

recessive model than for the dominant one.

Discussion

Genetic Architecture of Common Disease

The number and penetrance of alleles affecting disease risk,

i.e., the genetic architecture of a disease, directly affect the

strategy for identifying polymorphisms that modulate dis-

ease susceptibility. Few theoretical analyses of the genetic

architecture of common human diseases have been pub-

lished.42–44 The expected number and distribution of dis-

ease alleles in the population depend on mutation rate, se-

lection, and population demography. Mutation rate in this

case means mutation rate for disease alleles. This rate de-

pends on the number of the potential sites for deleterious

disease-causing mutations in the disease-related gene and
The Am
also on the number of disease genes in the genome. The dis-

ease mutation rate is higher than the nucleotide-substitu-

tion rate, which is estimated as ~10�8 mutations per nucle-

otide per generation.45,46 By assuming that (1) the disease

mutation rate is ~10�6 disease-associated mutations per

disease locus, that (2) a single dramatic expansion of the

human population occurred approximately 70,000 years

ago, and (3) that no genetic drift has occurred, Reich and

Lander44 concluded that one or two common polymor-

phisms can explain genetic susceptibility to common hu-

man diseases. However, the analysis probably oversim-

plifies the real situation because it assumes no bottlenecks

or effects of genetic drift for susceptibility mutations.

Pritchard,42 who used stochastic modeling to estimate the

level of genetic diversity for common diseases, concluded

that ‘‘it is unlikely that any single mutation will constitute

a large fraction of the susceptible class.’’ Simulation analysis

of the genetic architecture of common human diseases by

Peng and Kimmel47 demonstrated that mutation spectra

are expected to be simple for a single-locus model. If, how-

ever, a common disease is caused by multiple loci, then a di-

verse allelic spectrum with rare causal alleles is predicted.

Recently, Kryukov et al.48 combined analysis of muta-

tions causing human Mendelian diseases, of human-chim-

panzee divergence data and the data on human genetic

variation, and found that ~53% of new missense muta-

tions have mildly deleterious effects. The authors also

found that up to 70% of low-frequency missense alleles

are mildly deleterious. Kotowski et al.49 used sequencing

to identify rare polymorphisms in the PCSK9 gene
Figure 8. Dependence of the Probabil-
ity to Detect a True Association on Minor
Allele Frequency and Sample Size
Equal sample sizes for cases and controls
were assumed, and the total sample size
is shown. OR ¼ 1.5 in both the (A) reces-
sive and (B) dominant models.
erican Journal of Human Genetics 82, 100–112, January 2008 107



controlling plasma levels of low-density lipoprotein cho-

lesterol. The authors identified several rare nsSNPs with

strong phenotypic effects on cholesterol level, providing

support for the importance of including rare sequence

variants in association studies.

As noted above, the major parameter that defines the

diversity of disease alleles in a population is mutation

rate per gene per generation. Unfortunately, there are no

reliable estimates of this parameter. Reich and Lander44 es-

timated a mutation rate for disease-associated mutations as

3.2 3 10�6. Pritchard’s42 estimate ranged from 2.5 3 10�6

to 1.3 3 10�4. Estimates based on the analysis of mutations

reported in the human gene mutation database50,51 sug-

gest that the mutation rate for slightly deleterious muta-

tions is ~10�5. If the mutation rate for susceptibility alleles

is ~10�5 or higher, it is likely that the genetic architecture

of common diseases is diverse and that there are many sus-

ceptibility alleles in the population. Another factor that

affects the genetic architecture of common disease is the

number of genes contributing to genetic control of disease

susceptibility. If several genes affect disease susceptibility,

it is likely that many polymorphic susceptibility variants

underlie disease risk. For many common human diseases,

there are probably many susceptibility loci.

Cancer is a good example of a common disease with

many loci affecting disease susceptibility. The development

of cancer is a multistage process that involves genes impor-

Figure 9. Predicted Dependence of Most Powerful Minor Allele
Frequency on the Sample Size
Recessive (blue lines) and dominant (red lines) models were
assumed. The sample comprises equal numbers of cases and con-
trols, and the total size is shown. (A) shows OR ¼ 1.3. (B) shows
OR ¼ 1.5.
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tant for cell-cycle control, cell proliferation, apoptosis, an-

giogenesis, and other cellular-pathway functions. There-

fore, it is plausible to suggest that many causal SNPs

modulate cancer susceptibility. We suggest that sdSNPs,

which are subjected to weak purifying selection, are the

major players in genetic control of susceptibility to many

common diseases. However, cancer is predominantly a dis-

ease of late age when reproduction is mostly completed.

Therefore, natural selection could not have affected the fre-

quencies of alleles in cancer genes purely on the basis of

their effect on cancer risk. On the other hand, genes that af-

fect the risk of cancer did not evolve merely as cancer-risk

genes; this function emerged relatively recently with the re-

cent increase in life expectancy. Cancer suppressors and

oncogenes play an important role in the control of the

cell cycle, apoptosis, angiogenesis, and development pro-

cesses that are under pressure of purifying selection. There-

fore, protein-damaging mutations in cancer-related genes

would be expected to be under the pressure of purifying

selection and thus to have a lower population frequency.

SdSNPs and MAF

SdSNPs are not eliminated from the population because

the reduction in fitness they cause is too small. If we as-

sume that the observed population frequency of sdSNPs

is a result of equilibrium between purifying selection and

mutations, then the intensity of purifying selection

against sdSNPs can be estimated on the basis of the classi-

cal formula q ¼ m/hs, where q is the equilibrium frequency

of a mutant allele, m is the mutation rate per generation,

h is the dominance coefficient, and s is selection coeffi-

cients.52 Accepting that m is ~10�8 (see 45 and 46) and h

is ~0.1 (see 53) and assuming q ¼ 0.05, the selection coeffi-

cient will be ~10�6 � 10�5. Genetic drift is expected to

affect the population frequency of deleterious alleles when

s << 1/Ne, where Ne is the effective population size. There

is general agreement that for the human population, Ne

is ~104.54 Therefore, it follows that selection and drift

play a role in the distribution of MAFs for sdSNPs. This

might also explain the existence of causal SNPs with

high MAF for some common human diseases.11–14

The high prevalence of SNPs with low MAF among

nsSNPs, higher intronic ratios for rare SNPs, and the in-

verse relationship between the proportion of protein-dam-

aging SNPs and MAF strongly suggest that functional SNPs

are under weak purifying selection and therefore tend to

have lower MAFs. With respect to intronic ratio, we ac-

knowledge that the increase of intronic ratio for low MAF

can be a result of genotyping bias against intronic SNPs, es-

pecially those with low MAF when HapMap data are ana-

lyzed. It is also possible that some synonymous SNPs can

be functional because of their effect on splicing or codon

usage.55–58 Recent studies demonstrated that synonymous

SNPs undergo a slight purifying selection.59,60

Results of our study are in agreement with other reports

on the negative correlation between MAF and the propor-

tion of functional SNPs.35,61 Cargill et al.35 analyzed 392
2008



SNPs located in the coding regions of 106 genes and found

that the proportion of nsSNPs was highest among SNPs

with a low MAF. Wong et al.61 observed a similar relation-

ship between MAF and the proportion of nsSNPs predicted

to be protein damaging. The results of our analysis of the

relationship between MAF and the proportion of func-

tional SNPs are based on a much larger number of SNPs

than that previously studied, and they are in agreement

with previous studies and provide a more comprehensive

picture of the relationship between MAF and the propor-

tion of protein-damaging SNPs.

In this study, we used two data sets to retrieve MAF data:

the HapMap and SeattleSNPs. The HapMap sample size is

much larger compared to the SeattleSNPs sample size.

However, the HapMap database is likely to underreport

intronic SNPs, especially those with low MAF. This bias is

probably the major source of the increased intronic ratio

for benign and synonymous SNPs at low MAF category

(Figures 2A and 2D). The intronic ratio was constant for

benign and synonymous SNPs when the SeattleSNPs data

were analyzed (Figures 3A and 3D). We cannot exclude

also that a weak purifying selection against benign and

synonymous SNPs might as well have contributed to the

increased intronic ratio for benign and synonymous

SNPs as suggested from the analysis of MAF distributions

(Figures 3B, 3C, 3E, and 3F).

Our analysis was based on the assumption of the inde-

pendence of SNPs. This is violated to some extent due to

linkage disequilibrium (LD) between SNPs. If SNPs that

are in strong LD tend to have similar MAFs, then the num-

ber of independent observations will be lower than the

number of SNPs in the analysis. It is difficult, however, to

imagine a biological phenomenon that can link MAFs of

the SNPs on the basis of their position. We are not aware

of any studies that address this phenomenon on a ge-

nome-wide level. Nevertheless, we have addressed this

concern by analysis of singletons—single SNP per gene.

In our data set, ~47% of nsSNPs are singletons. Those

SNPs are unlikely to be in strong LD unless the genes are

located very close to one another. The analysis conducted

with singleton SNPs yielded very similar results in terms of

MAF distribution between benign and possibly and proba-

bly damaging SNPs (data not shown).

Most SNPs in the Human Genome Are SNPs

with MAF <5%

The MAF distribution of SNPs from the International Hap-

Map Project shows that more than 40% of SNPs have MAF

<5%. Because the International HapMap Project preferen-

tially targeted common SNPs, the real proportion of rare

SNPs is definitely higher than 40%. We estimate, on the

basis of ENCODE data, that ~60% of SNPs have MAF

<5%. This estimate is supported by Wong et al.,61 who

sequenced 114 genes from the Environmental Genome

Project.62,63 A total of 64, 38, and 12 genes were sequenced

in 44, 90, and 450 individuals, respectively. Across this

gene set, each base was evaluated on an average sample
The A
size of 84 individuals. The authors found that SNPs with

MAF <5% constituted >60% of the total number of

SNPs. If we include SNPs with MAF<< 1% in our analysis,

the proportion of rare SNPs will be even higher. On the ba-

sis of practical considerations, we suggest that rare SNPs be

considered those with MAF R0.5% and %5%. Indeed, cur-

rent sample sizes do not allow effective detection and com-

parison of frequencies of SNPs with MAF <0.5%. Another

reason for setting the lower limit at 0.5% for rare SNPs is

that very rare SNPs would need extremely high penetrance

(similar to that for dominant Mendelian mutations) to

greatly affect the prevalence of disease.

Conclusions

We hypothesized that interindividual variation in suscepti-

bility to common diseases is mainly caused by sdSNPs in

genes implicated in disease pathways. Our hypothesis sug-

gests that causal SNPs have low MAF; however, the low

population frequency of the causal SNPs is compensated

for by the large number of such SNPs in the genome. The

deleterious effect of sdSNPs is deleterious enough to impair

gene function and increase disease risk. It is, however, not

strong enough for selection to totally eradicate them from

the population (genetic drift, founder effects, and popula-

tion bottlenecks are factors that help retain sdSNPs).

The principal difficulty in explaining common diseases

by sdSNPs is that sdSNP might be too rare to explain the

observed disease’s prevalence. The high proportion of

rare SNPs in the genome, however, can counter the low

MAF of the causal SNPs. According to the Build 126 of

the dbSNP database, there are >56,000 nsSNPs in the

human genome. The real number of nsSNPs is probably

higher because rare SNPs are underreported. If we assume

that there are twice as many nsSNPs as there have been

reported today64 and half of these nsSNPs are slightly del-

eterious with MAF <5%, and that there are ~24,000 genes

in the human genome, there should be two to three rare

sdSNPs per gene. The real number might be higher still

because we did not consider promoter SNPs or SNPs located

in sites important for splicing. This suggests that the effect

of rare sdSNPs on disease prevalence can be substantial.

Our many rare SNPs hypothesis suggests that targeting

rare SNPs in large case-control association studies has

more power to detect causal SNPs than does targeting com-

mon SNPs. We found that there is a negative correlation be-

tween sample size and mpMAF, and this explains why most

of the causal SNPs identified to date are common. Indeed,

studies that have identified (and confirmed) causal SNPs

used sample sizes of between 500 and 1000 subjects; for

such sample sizes, the mpMAF ranges from 8% to 30%, de-

pending on the OR and type of model. For case-control

studies with sample sizes of R2000, the mpMAF is expected

to be <5% (at least for the dominant model), suggesting

that targeting rare SNPs in large studies might be a better

strategy for identifying causal SNPs than targeting common

SNPs, which are less likely to be functional. We conclude

that targeting SNPs with MAF <5% in large case-control
merican Journal of Human Genetics 82, 100–112, January 2008 109



studies is a sound strategy to identify causal SNPs. Direct se-

quencing of candidate regions in a subset of cases and con-

trols (e.g., 100 cases and 100 controls) can be used to iden-

tify rare SNPs. Those rare SNPs should be then genotyped

in the whole sample with custom-designed chips.

We believe that targeting rare potentially functional

SNPs (nsSNPs and SNPs located in promoter regions) can

be a more appropriate strategy to understand the genetic

architecture of many complex diseases compared with

the strategy that targets common SNPs. Therefore, a practi-

cal recommendation from our analysis is the need for ge-

notyping rare SNPs, especially those from the coding and

promoter regions, into genotyping platforms. Another ap-

plication of our analysis relates to assigning priors in Bayes-

ian association analysis framework—SNPs can be assigned

different prior weights depending on their MAFs, with

higher weights being given to those with lower MAF.

In conclusion, we hypothesized that numerous rare

functional SNPs are major contributors to susceptibility

to common diseases, including cancer. The analysis of

joint probability that a SNP is functional and that it will

be detected as significant in a case-control study demon-

strated that, for a given sample size, there is a MAF for

which this joint probability is maximal—the most power-

ful MAF. We found that the larger the sample size, the

lower the mpMAF, suggesting that for studies with large

sample sizes (5000 and higher) targeting rare SNPs will be

a better strategy for identifying causal SNPs than targeting

common SNPs.

Supplemental Data

One table is available at http://www.ajhg.org/cgi/content/full/82/

1/100/DC1/.
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